Radio Frequency Heating for *In Situ* Thermal Treatment

Ethylene Dichloride and 1,1,2-Trichloroethane in Groundwater

Presented by: Andrew Gray
Co-Authors: Andrew Hunt¹, Joe Fiacco¹, Darren Reedy¹, Cole Pearson¹, Camillo Coladonato², Jeb Rong³, Ray Kasevich³, John McTigue³

International Cleanup Conference
Adelaide, South Australia
September 2019
Abstract 176

© Copyright 2019 by ERM Worldwide Group Limited and/or its affiliates (ERM). All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM.
Agenda Slide

01 Introduction
02 Approach
03 Results
04 Lessons Learned
05 Conclusions

RADIO FREQUENCY HEATING FOR IN SITU THERMAL TREATMENT OF ETHYLENE DICHLORIDE AND 1,1,2-TRICHLOROETHANE IN GROUNDWATER
RADIO FREQUENCY HEATING FOR IN SITU THERMAL TREATMENT OF ETHYLENE DICHLORIDE AND 1,1,2-TRICHLOROETHANE IN GROUNDWATER
Progression of Business Approach

RADIO FREQUENCY HEATING FOR IN SITU THERMAL TREATMENT OF ETHYLENE DICHLORIDE AND 1,1,2-TRICHLOROETHANE IN GROUNDWATER

• Contamination within fractures
• Water-filled porosity <5%
• >95% basalt

www.erm.com
01 – Introduction (Abiotic Hydrolysis)

RADIO FREQUENCY HEATING FOR IN SITU THERMAL TREATMENT OF ETHYLENE DICHLORIDE AND 1,1,2-TRICHLOROETHANE IN GROUNDWATER
02 – Approach (Electromagnetic Energy)

Industrial, Scientific, Medical (ISM) Frequencies

- 5.8 GHz
- 2.45 GHz
- 915 MHz
- 433.92 MHz
- 40.68 MHz
- 27.12 MHz
- 13.56 MHz
- 6.78 MHz

Alternating Current (AC) generates electrical (red) and magnetic (blue) fields.

22.11 metres
02 – Approach (Radio Frequency Heating)

- Radio frequency (RF) electromagnetic energy transmitted *through* basalt to preferentially heat polar molecules (e.g. water).

- Similar to a microwave oven heating a cup of tea (but not the mug).
 \[\text{Heat}_{\text{TEA}} \gg \text{Heat}_{\text{MUG}} \]

- Increased temperature *increases solubility*, making the DNAPL more *susceptible to biodegradation*, and *abiotic hydrolysis*

- Direct *source removal*

- Low O&M

- No waste production

RF at 13,560,000 Hz (13.56 MHz)

Standard 50 Hz AC
02 – Approach (Equipment)

Input Power
220V / 3 phase / 50 Hz

Radio Frequency Generator
24 kW Output / 13.56 MHz

Matchbox
24 kW Output / 13.56 MHz

Coaxial Cable
1000 V / 46 mm

Dipole Antenna
5 m x 89 mm

Chiller
Coolant Water / 43 Lpm
02 – Approach (Equipment)

- Master Power
- Temperature Controller
- RF Generator
- Matchbox
- Coaxial Cable
- Fibreoptic Temperature Sensor
- Antenna Wellhead

RADIO FREQUENCY HEATING FOR IN SITU THERMAL TREATMENT OF ETHYLENE DICHLORIDE AND 1,1,2-TRICHLOROETHANE IN GROUNDWATER
03 – Results (Antenna)

Max Antenna Temperature
114°C

Temperature inferred (sensor failure)

Max power transmitted
17 kW

Power cycling (on/off) during:
- Maintenance
- Temperature monitoring
- Groundwater sampling
03 – Results (Groundwater Temperature)

Jan 2019

Initial Groundwater Temperature
~20°C (~68°F)

Apr 2019

Maximum Groundwater Temperature
~78°C (~172°F)

Depth (metres)

A 19.9 20.9 20.9
B 19.9 20.5 20.3
C 19.8 20.0 19.9
D 18.9 19.3 19.6

Initial Groundwater Temperature
~20°C (~68°F)

Maximum Groundwater Temperature
~78°C (~172°F)
03 – Results (Groundwater Temperature)
03 – Results (Groundwater Chemistry)

Decreasing EDC
Increasing VC

Progression of Business Approach

RADIO FREQUENCY HEATING FOR IN SITU THERMAL TREATMENT OF ETHYLENE DICHLORIDE AND 1,1,2-TRICHLOROETHANE IN GROUNDWATER

RFM_4A
RFM_3A
RFM_2A
RFM_1A

Percent Contribution

Total CVOC Concentration (µg/L)

EDC
CVOCs
Aromatics
04 - Lessons Learned

ROI >4 metres for an individual well

Model simulations predict compounded thermal influence at full-scale

Next steps to include:
• Multiple-well configurations
• Options for renewable energy source to power RFH System (e.g. solar)
05 - Conclusions

- **Focused**. RFH effectively targets polar molecules (groundwater)
- **Effective**. Simply increasing the temperature accelerates abiotic hydrolysis
- **Efficient**. Energy not wasted through directly heating the basalt
- **Heat Storage**. Basalt absorbs and retains heat from the groundwater = opportunity for optimisation
- **Sustainable**
 - **Energy Consumption**. Low energy consumption (25 kW) per antenna
 - **Low Cost**. Electricity cost ~ $60/day
 - **No Waste**
Thank you!

The business of sustainability