DEVELOPMENT OF ADVANCED CHEMICAL TREATMENT FOR PFAS IN CO-CONTAMINATED GROUNDWATER

INTERNATIONAL CLEANUP CONFERENCE ADELAIDE 2019

Scott Grieco, PhD, PE JACOBS

Co-Author Acknowledgements

- Laura Cook Jacobs
- Doug Gustafson APT Water

PFAS Treatment Technologies – Developing Destructive Technologies

- Alkaline Ozone/Perozone
- Electrochemical Oxidation
- Non-Thermal Plasma

8-12 September 2019

Heat activated persulfate

- UV + Sulfite
- Vitamin B12 with titanium citrate
- Sonolysis

Advanced Alkaline Oxidation

- "Conventional" Advanced Oxidation (Ozone, UV/H₂O₂) has limited effectiveness
 - Oxidation can mineralize PFOA and carboxylic acids
 - Not as effective for PFOS and sulfonic acids
- Advanced Alkaline Oxidation enhances destruction
 - Promotes balance of both oxidizing and reducing radicals

Background - Precursors

- 1000's of PFAS compounds created very few quantified analytically
- PFAS that can undergo transformation to form terminal end products
 - Alkyl chain not fully fluorinated
 - Creates weak link
 - Can transform to biotic or abiotic mechanisms
 - Precursors may constitute a majority of fluorinated chemical mass at some sites

Source: van Zelm, R., Env. Tox. and Chem., 27:11, 2216-2223, 2008

Preliminary Bench-Scale Studies – Alkaline Perozone

- Academic work published in 2012
- Used perozone (hydrogen peroxide + ozone) in a two-step process at unconventional pH values
- pH decreases commensurate with PFOA reduction
- Removal of PFOS > PFOA

Source: Lin, A. et.al., 2012, J Haz Mat

Preliminary Bench-Scale Studies – Alkaline Ozone Bench-Test Results

- Significant reduction of PFOS and PFOA at an alkaline pH
 - Testing on mix of PFOA and PFOS only
- Data corroborates results observed during 2012 Lin Study
- Supports need for alkaline conditions

Site Sample Bench-Scale Study

- Testing conducted by APT Water in benchscale HiPOx reactor.
- Objective:
 - Assess advanced alkaline oxidation for treatment of AFFF contaminated groundwater
- Round 1 Screening Tests
 - Ozone versus perozone
 - Alkaline versus natural pH
 - Single versus dual pH steps
 - Various H2O2:O3 mole ratios
- Round 2, 3, 4
 - Select best case for repeated optimization

Initial Test	Ozone Dose (mg/L)	Pre-Treatment pH	H ₂ O ₂ :O ₃ Mole Ratio	Final pH
1	2,000	natural	0	natural
2	2,000	natural	0	11
3	2,000	natural	0.50	natural
4	2,000	natural	0.25	11
5	2,000	natural	0.50	11
6	15% of 2,000	natural	0	11
	85% of 2,000	11	0	11
7	15% of 2,000	natural	0.25	11
	85% of 2,000	11	0.25	<u> </u>
8	15% of 2,000	natural	0.50	11
	85% of 2,000	11	0.50	ΤT

Screening Results

рН	COD (mg/L)	TOC (mg/L)	Total VOCs (μg/L)	Total PFAS (ng/L)	6:2: FTS (ng/L)	PFOA (ng/L)	PFOS (ng/L)	PFBS (ng/L)	PFHxA (ng/L)	PFHxS (ng/L)
5.28	8.5	0.56 J	220	1,613	575	151	46	28	420	261

- Tests 1 and 2 evaluate pH
 - Alkaline condition (T2) outperformed natural condition (T1)
- Tests 3, 4, and 5 evaluate $H_2O_2:O_3$
 - Generally higher transformations of sulfonates observed at higher ratios
- Tests 6, 7, and 8 evaluate single versus dual pH steps
 - The dual pH step tests generally performed better
- Dual pH with 0.5 H₂O₂:O₃ test performed best (T8)

INTERNATIONAL

ONFERENCE

CLEANUP

ADELAIDE 2019

Anticipated Results

Test Results

INTERNATIONAL CLEANUP CONFERENCE ADELAIDE 2019

8-12 September 2019

A ANSA

Summary & Path forward

- Alkaline perozone may be a valuable technology for treatment of PFAS
- Addressing real-world impacts with precursor load presents challenges
- Completing one last higher dosage to assess destruction curve
- Looking at further optimization
 - Longer oxidant contact time
 - Maintaining elevated pH
 - PFOS versus fluorotelomer-based AFFF

Thank-you

scott.Grieco@Jacobs.com